

Girls’ Programming Network

Guess Who!

This project was created by GPN Australia for GPN

sites all around Australia!

This workbook and related materials were created by tutors at:

Sydney and Canberra

Girls’ Programming Network

If you see any of the following tutors don’t forget to thank them!!

Writers Testers

Caitlin Macleod

Rachael Newitt

Imaina Widago

Alesiya Maynard

Courtney Ross

Jeannette Tran

Fiona Lin

Renee Noble

Alex McCulloch

Sheree Pudney

Claire Quinlan

Part 0: Getting set up!

Task 0.1: Set Up the File

Create a file where we are going to write the code for our game.

1) In your Python 3 IDLE click File and create a New File.

2) Start by saving your file and calling it guess.py

Now when you want to run your code, just click Run (or press F5 on the keyboard)!

Great! Now we’re ready to code!

Task 0.2: You’ve got a blank space, so write your name!

At the top of the file use a comment to write your name!

Any line starting with # is a comment.

This is a comment

CHECKPOINT

If you can tick all of these off you can go to Part 1:

☐ You should have a file called guess.py

☐ Your file has your name at the top in a comment

☐ Run your file with F5 key and it does nothing!!

Part 1: Welcome Message

Goal: Goal here!

Task 1.1: Print a welcome message

We want to print a message to tell the user what our program does.

1. On the line after your name, use the print statement to display the following

message:

Don’t want to type all this out? Go to http://bit.ly/gpn-2018-4.

Hint

Want to print multiple lines at a time? You can use three sets of quotes instead of one, to

make your strings go over multiple lines

print("""
Print
Three
Lines
""")

Task 1.2: Copy in the list of people

We need to create the list of all the people in our Guess Who game! This list will also
contain a list of all their attributes.

1. Copy and paste the list from http://bit.ly/gpn-2018-4 and assign it to a variable
called people.

2. Format the list of lists by going to top menu bar, click Format -> Format
Paragraph. This will make the list of people easier for us to read.

Welcome to Guess Who!

Moves: Pick a person, and let the computer guess who

you’re thinking of. Type “yes” or “no” to answer the

questions.

Good luck!

http://bit.ly/gpn-2018-4
http://bit.ly/gpn-2018-4

Task 1.3: Hide that character!

In this game, we’ll be getting the computer to guess who the user is thinking of! Select a
person from the list of people to hide. This workbook will refer to that person as the hidden
character.

★ Bonus 1.4: Who do you know? ★

Add additional people to your list! They need to each have an eye colour, hair colour, and

accessory.

You can add as many as you like, but make sure no one has exactly the same hair,

accessories and eye colour as someone else!

 CHECKPOINT

If you can tick all of these off you can go to Part 2:

☐ Print a welcome message

☐ You have a list of people.

☐ You have selected a character for the computer to guess.

☐ Run your code!

Part 2: Selecting Attributes!

Task 2.1: What’s your style?

Our people all have different attributes, in the order of name, eye colour, hair colour, and
then accessory. We need to create lists of all the different options!

1. Create a list of all the different possible eye colours, and store it in a variable called
eye_colours.

2. Do the same thing for all the different hair colours, and then the accessories! Call
the variables hair_colours and accessories.

Make sure that each option that you included in people is also stored in the lists above!

Goal: Goal here!

Task 2.2: Creating looks

So the computer can start guessing, we need the computer to select an option from each

of our eye_colours, hair_colours and accessories lists!

1. Select an item from eye_colours. Store it in a variable called eye_guess.

2. Do the same thing for hair_colours and accessories. Call the variables

hair_guess and accessory_guess.

Hint

We can access items in a list individually. The below code will print out the second item in

the people list:

print(people[1])

Don’t forget that lists start from 0!

Task 2.3: Do they look like this?

The computer needs to find out if the eye colour, hair colour and accessory they selected

match the eye colour, hair colour and accessory of the hidden character.

1. For the eye_guess, use input to ask the user if it matches the eye colour of the

hidden character. Store the answer in a variable called eye_guess_answer.

2. Do the same thing for hair_guess and accessory_guess. Store the answer in

variables called hair_guess_answer and accessory_guess_answer.

★Bonus 2.4: Uppercase or lowercase

Sometimes users don’t type exactly what we expect them to! If you’re expecting a user to

type "yes" or "no" but they type "Yes", "YES" or "NO" your code may not recognise their

answer correctly.

Make your game recognise user input if they enter versions of your expected input with

different capitalisation.

Hint

"FrOg".lower() will return "frog". Try use .lower() on your variables to make sure

the human players move is converted to lowercase!

 CHECKPOINT

If you can tick all of these off you can go to Part 3:

☐ You have a list called eye_colours

☐ You have a list called hair_colours

☐ You have a list called accessories

☐ The computer has selected an eye colour, hair colour and

accessory to guess.

☐ The computer asks the user if their hidden character has the eye

colour, hair colour and accessory that the computer picked and stored
the answers.

Part 3: Narrowing it down!

Task 3.1: Splitting out people!

Now that we know whether the hidden character has the attributes the computer
guessed or not, we need to compare it to the list of people.

1. Select the first person in the list of people. Store it in a variable called person.

Task 3.2: Splitting out attributes

For each person, we need to check their eye colour, hair colour, and accessory!

1. For the person, get their name. Store it in a variable called person_name.

2. For the person, also get their eye colour, hair colour and accessory. Store it in
variables called person_eye, person_hair and person_accessory.

Task 3.3: Manual Deletion!

Let’s try seeing how people will be eliminated, and what our people list will look like after
we’ve eliminated everyone with brown hair. Cross off anyone who has brown hair! Don’t
forget to include any characters you added.

Aleisha

Brittany

Charlie

Dave

Eve

Frankie

George

Hannah

Isla

Jackie

Kevin

Luka

Task 3.4: Do they match?

Now that we have the person’s attributes, and the user has answered the computer’s eye
colour, hair colour and accessory guesses, it’s time to work out if we can eliminate
anyone!

What are the options for eye colour? Let’s assume that the hidden character has blue

eyes:

Guess Yes No

Blue eyes Keep Eliminate

Not Blue eyes Eliminate Keep

If the computer guessed that the hidden character has blue eyes, and the user

answered “yes”, then any character that doesn’t have blue eyes needs to be eliminated.

Otherwise, if the user answered “no”, then any character that does have blue eyes needs

to be eliminated.

Can you fill out this table for hair colour? Let’s assume that the hair colour of the hidden

character is brown:

Guess No Yes

Brown Hair

Not Brown Hair

Let’s do it one more time, this time for accessory! Let’s assume that the hidden

character has no accessory:

Guess Yes No

Has accessory

Has no accessory

Now we know all the ways that a person can be eliminated!

Task 3.5: What if?

Now that we know all the different ways that a person can be eliminated, we can code it

using if and elif statements!

1. Create if and elif statements to check the eye colour. If the eye_guess was

correct and the person_eye does not match eye_guess, print out “Eye colour

does not match!”. If the eye_guess was wrong, and the person_eye does match

the eye_guess, also print out “Eye colour does not match”.

2. Do the same thing as you did in step 1, but for checking the hair colour! Make sure

it’s part of the same if-elif chain by continuing with elifs!

3. Do the same thing you did in step 1, but for checking the accessory! Make sure it’s

part of the same if-elif chain by continuing with elifs!

Hint

In if statements, we can use the keyword and to check if multiple things are true:

if raining == True and umbrella == “I forgot it!”:

print (“Don’t go outside!”)

elif raining == False and umbrella == “I forgot it!”:

print(“It’s okay, it’s not raining”)

elif raining == True and umbrella == “I’ve got it!”:

print(“Awesome! Let’s go outside!”)

Hint

Why so many elifs???

We need to use and if-elif-elif-elif-elif-elif chain because we only want to add

the character to the elimination list once! If we use several if-elif pairs then we might

add the character to the elimination list of multiple times for different features!

If we try and eliminate them multiple times the computer will be confused because they are

already eliminated.

 CHECKPOINT

If you can tick all of these off you can go to Part 4:

☐ Get all the attributes of the person

☐ Compare all the ways a person can be eliminated

☐ If-elif statements list all the ways that a person can be eliminated,

and print out when they are

☐ Try running your code!

Part 4: Eliminate! Eliminate!

Task 4.1: Again, Again, and Again!

Now that we’ve checked to see if the attributes of one person matches what the computer

guessed, we want to be able to check everyone in the people list! To do this, we’re going

to use a for loop.

1. Use a for loop to go through each person in the people list to check to see if they

need to be eliminated.

2. Make sure that all the code from section 3 is inside the for loop!

Hint

Indented lines have a tab at the start like this, they look this:

for blah in something:
 THIS IS INDENTED

Task 4.2: Make a list of things to eliminate

The computer needs to track all of the people that it knows isn’t the correct answer. We’re

going to store this in a separate list for now.

1. Create an empty list and assign it to a variable called eliminate.

Task 4.3: Make a list of things to eliminate

We need to add all the people that need to be eliminated to the eliminate list! In your if
and elif statements that were created in section 3:

1. Every time there isn’t a match, update your code so instead of printing something,
we’re going to add the person to the eliminate list.

Hint

You can add items to lists using the append statement:

dinner = []
dinner.append(“pizza”)

Task 4.4: Eliminate Them!

In another for loop, go through each person in the eliminate list and remove them from

the people list. This way, the computer won’t try to guess them.

1. Create a for loop that goes through each person in the eliminate list.

2. Remove each person from the list of people.

Hint

If I wanted to remove an element from a list I could use code like this:

dinner_options.remove("pizza")

 CHECKPOINT

If you can tick all of these off you can go to Part 5:

☐ Your code loops over every person in the people list

☐ Your code removes people already identified as eliminated from

the list of available people.

☐ Try printing out your list of people before and after eliminating

characters!

Part 5: Guess Them!

Task 5.1: Making the guess

It’s time for the computer to guess who it is! The computer needs to ask the user if that’s

the hidden character by using person’s name.

1. Pick the first person from the list of people not yet eliminated. Store it in a variable

called guess.

2. From guess, get the name of the person. Store it in a variable called guess_name.

3. Use input to ask the user if the computer guessed the name correctly. Store the

answer in a variable called answer.

Hint

Remember that people is actually a list of lists! You may find it useful to print out guess
and guess_name to help check that you’re accessing the list correctly.

Task 5.2: That’s correct!

If the computer guessed the right person, it’s time to celebrate! Get the computer to print

out a message about how great the computer is at this game, and how lovely it was to play

with the user.

1. Create an if statement that checks to see if the guess was correct. If it was, print

out a congratulations and thank you message.

Task 5.3: Wrong answer!

If the computer didn’t guess correctly, the person they guessed should be removed from

the list of people so they don’t get guessed again.

1. Update the if statement you created in task 5.2 to have an else.

2. In the else statement, remove the guess from the list of people.

 CHECKPOINT

If you can tick all of these off you can go to Part 6:

☐ The computer selects the first person from the list of people, and

guesses who!

☐ The computer responds to a correct guess by printing a

congratulations message!

☐ The computer responds to an incorrect guess by removing the

character from the list of possible people.

Part 6: Randomize it!

Task 6.1: Import random library

It’s really boring that our computer only guesses the same eye colour, hair colour and

accessory! Let’s randomise what the computer picks.

At the top of your file add this line:

import random

Goal: Goal here!

Task 6.2: Pick a random look

Now we need to update how the computer makes its guesses!

1. Update the code where the computer selects the eye_colour_guess so that it’s

randomly selected!

2. Do the same for hair_colour_guess and accessory_guess!

3. Now randomly select the person to guess!

Hint

If I wanted to choose a random food for dinner I could use code like this:

dinner = random.choice(["pizza", "chocolate", "nutella", "lemon"])

 CHECKPOINT

If you can tick all of these off you can go to Part 7:

☐ Import random

☐ Pick a random value from eye_colours

☐ Pick a random value from hair_colours

☐ Pick a random value from accessories

☐ Pick a random person to guess from people

☐ Try running your code!

Part 7: Break the loop
Task 7.1: Add the game loop!

Create a while loop that runs forever, so the computer can ask as many questions as it

wants!

You’ll need to use:

● A while loop

● A True statement

The while loop will run as long as what comes after the while is true. The easiest way to

do this is using a boolean True.

Use this line to make the game play on repeat

while True:

Hint

You will need to indent all the code that you want looped!

while True:
 THIS IS INDENTED

Task 7.2: To infinity and beyond!

Whoops! It looks like we created an infinite loop - the game never ends! You can press

CTRL+C to stop your program.

We need to break the loop!

1. Update the if statement that checks to see if the computer guess correctly to

include a break statement.

★Bonus 7.3: Liar, Liar!

What if our user wasn't telling us the truth? If we get to the end of guessing and there's no

more people to guess, what happens?

Run your code and see if you can make the computer run out of things to guess!

Hmmm….We should fix that. Let's add a check to check how many people are left in the

list and yell at our user for trying to trick us if there is 0.

1. Create an if statement that checks the length of the people list.

2. If there is no one left, print out a message that says "You're playing tricks
on me! There's no one left :("

Hint

You can check the length of the list using len().

len(["pizza", "chocolate", "nutella", "lemon"])

 CHECKPOINT

If you can tick all of these off you can go to the Extensions:

☐ Your code runs without any problems.

☐ Guessing the right person ends the game.

☐ When the game is over, you break out of the loop.

Part 8: Extension: Smarter guessing!
Task 8.1: Process of elimination

Let's make our computer smarter!

To do this, we're going to work through each of the lists for eye colour, hair and

accessories from beginning to end.

For example, our hair colours are:

hair = ["black","brown","red"]

Imagine if we ask our user if the hair colour is black, and they say no.

Then we ask if it's brown, and our user says no.. what colour is the hair?

There's only one color left, so we know the hair colour must be red!

Let's change our code to get rid of random.choice and replace it with list indexes. Every

time we get a hair colour from the list, we want to get the first option.

Go back and look at part 3 if you need a reminder about how list indexes work.

Task 8.2: We like to .remove() it, .remove() it!

Now we're getting the first item in the hair colour list every time. But, because our list is the

same we always choose "black".

To fix this we need to make sure we remove the bad items from the list, so we don't ask

about it again.

Task 8.3: No questions asked

Just like the example before, if there's only one choice left, we don't need to ask whether

it's the right one, we already know!

Change your code so that if there's only hair colour left in the list, we don't ask any more

questions about hair colour.

Task 8.4: Off we go again!

Our hair colour guessing is excellent now, but we can definitely make the others better too.

Go back and improve the guessing about eye colour and accessories to make them better

as well.

 CHECKPOINT

If you can tick all of these off, you have finished this part:

☐ Your guessing for eye colour, hair colour and accessories all work

using list indexes

☐ When a guess is wrong, you remove it from the list

☐ When the lists are only one element long, you don't ask any more

questions about that characteristic

Part 9: Extension: Read it in!

Task 9.1: Where have all the people gone?

1. Create an empty list of people.

You can comment out your list of people from earlier or delete it, whichever you prefer.

Task 9.2: Here they are!

1. Download the file guess_who_people.txt from http://bit.ly/gpn-2018-4!

2. Make sure you save it in the same directory as your python file.

Task 9.3: Open sesame!

Use Python's with open to open the the text file.

Use this line just after you create your empty list to open your people file and read what it

says.

with open("guess_who_people.txt") as f:

http://bit.ly/gpn-2018-4

Task 9.4: Let's loop again

So we can open the file, but how do we get the people out?

We make another loop of course!

You’ll need to use:

● A for loop

Use the code below inside your open statement to help you read in each of the lines in the

file, one by one.

for line in f:
 line = line.strip()
 parts = line.split()

Hint

with open and the for loop both need to be indented. So if you're getting an error, make

sure to check that your code is indented like below.

for blah in something:
 THIS IS INDENTED
 for loop in loop:
 THIS IS REALLY REALLY INDENTED

Task 9.5: Append your people!

Now we have each of the people in the file, we want to add them to our people list. Try to

do this using append().

 CHECKPOINT

If you can tick all of these off, you have finished!

☐ You are using "with open" to open a file

☐ You use a loop to read each line in the file

☐ All of the people are appended to your people list

☐ Your code runs without any problems

