
 

 
 

 

 

 

 

 

Girls’ Programming Network 
 

 

Guess Who? 

  



 | 1 

This project was created by GPN Australia for GPN 

sites all around Australia! 
 

 

This workbook and related materials were created by tutors at: 
 

Sydney and Canberra 

          

Girls’ Programming Network  

 
 

 

If you see any of the following tutors don’t forget to thank them!! 
 

Writers Testers 

Jeannette Tran 

Fiona Lin 

Renee Noble 

Alex McCulloch 

Annie Liu 

Bryony Lanigan 

Heather Catchpole 

 

 

 

Vivian Dang 

Courtney Ross 

Rachel Alger 

Libby Berrie 

Caitlin Macleod 

Sheree Pudney 

Rashmica Gupta 

 
 

  



 | 2 

Intro 
to 

Pytho
n 

Part 0: Setting up 

Task 0.1: Making a python file 

Open the start menu, and type 'IDLE’. Select IDLE 3.5. 

 

1. Go to the file menu and select 'New File’. This opens a new window. 

2. Go to the file menu, select ’Save As’  

3. Go to the Desktop and save the file as ‘guess_who.py’  

 

Task 0.2:  You’ve got a blank space, so write your name! 

At the top of the file use a comment to write your name!  

Any line starting with # is a comment. 

 

# This is a comment 

 

CHECKPOINT  

If you can tick all of these off you can go to Part 1: 

☐ You should have a file called guess_who.py 

☐ Your file has your name at the top in a comment 

☐ Run your file with F5 key and it does nothing!! 

 

 

  



 | 3 

Part 1: Welcome to ‘Guess Who’ 

Task 1.1:  Welcome to ‘Guess Who’ 

Let’s print out a welcome message to the players. 

 

 

 

Task 1.2:  Who is playing my game? 

Let’s ask the player for their name, so we can find out who’s playing!  

Hint 

To get some input from the user, we can use input. Remember to store the user’s 

answer in a variable so we can use it in our code - call it something like player_name! 

 

Task 1.3:  Let's play! 

Let’s print out a customised message to the player. 

 

For example, if the player’s name was Annie, we might print: 

 

Let us start playing, Annie!  

 

 

 CHECKPOINT  

If you can tick all of these off you can go to Part 2: 

☐ Print a welcome message to the player 

☐ Ask for the player’s name 

☐ Print a customised message to the player 

☐ Try running your code! 



 | 4 

Lists 

Part 2: Picking a person! 
 

Task 2.1:  Creating a person 

Let’s create our own character using a list, and store it in a variable called character.  

 

You can make the person to be like you, your friend, or anyone you want!  

Hint 

We want the list to store the character’s name, eye colour, hair colour, and accessory. 

We’re going to store it in a list, in that order 

 

For example: 

['Annie', 'brown', 'blue', 'glasses'] 

 

Task 2.2: Print out the character 

Let’s print out the character that you have created. It should look like this:  

 

 

 

Task 2.3: Get the character’s features! 

Make a variable to store the name in. Then get the name from the list of features of 

your character.  

 

Do the same thing for each of the other features (eye, hair and accessory). 

Hint 

To get something out of a list, you add this to your program: 

pets = ['Fluffy', 'Oscar', 'Audrey', 'Molly'] 

cat = pets[3] 

 

Don’t forget that lists start at index 0! 

  



 | 5 

 

Task 2.4: Print out each of the features 

Use print statements to print out the name, eye colour, hair colour and accessory of our 

character. 

 

It should look like this when you run your code: 

 

 

 

CHECKPOINT  

If you can tick all of these off you can go to Part 3: 

☐ Created a person 

☐ Print out the person 

☐ Split up the features of the person 

☐ Print out the features of the person 

☐ Run your code! 

 

 

  



 | 6 

If 
Stateme

nts 

Part 3: Guess who? 

 

Task 3.1: Guessing someone’s name 

Use input to ask the player to guess the name of your character. Save their answer in a 

variable - name it something like guess. 

Hint 

Don’t forget to comment out the code where we print out the character we created and 

their features! 

It would be a pretty boring game if we just told the player who the character is. 

 

Task 3.2: Check if they have guessed correctly! 

Use if and else statements to tell the player whether or not they have made the right 

guess.  

 

You should also congratulate them if they have guessed it right: 

 
 

You should print out the correct name if they have guessed wrong, like below: 

 

 

CHECKPOINT  

If you can tick all of these off you can go to Part 4: 

☐ Ask the player to guess who and store it in a variable 

☐ Congratulate them if they guess it right 

☐ Tell them what the correct name was if they are wrong 

☐ Run your code and test different names 

 

 



 | 7 

★ BONUS 3.3: ALEX alex or AlEx 

Waiting for the next lecture? Try adding this bonus feature!! 
 
We can use word = word.title() to change what the player entered to title case. Title 

case is when the first letter is upper case and all the rest are lower case, like a name! 
 
Update your code so we’re always using the title case version of what your player entered! 
 

 

  



 | 8 

Part 4: Let’s get more information! 

We are just guessing blindly at the moment, which isn’t very fun! Let’s let the player get more 

information about the person before they have to guess who. 

 

Task 4.1: What’s their eye colour? 

Before your code that asks the player to guess who, ask the player to guess what the 

person’s eye colour is! Store their answer in a variable - call it something like: eye_guess 

 

Check to see if the eye colour that the player guessed is the correct one using if and 

else statements. If they are right, tell them "Yes", otherwise tell them "No". 

 

For example, if your character's eye colour is brown and the user guesses right: 

 

Guess their eye colour? brown 

Yes 

 

Task 4.2: What’s their hair colour? 

Now do the same thing that you did for 4.1, but this time, ask to guess the person’s hair 

colour! 

 

Put this after you have asked them to guess the eye colour, but before your code that asks 

the player to guess who. 

 

Task 4.3: What’s their accessory? 

Do the same thing again that you did for 4.1 and 4.2, but for the person’s accessory! 

 

Put this after you have asked them to guess the hair colour, but before your code that asks 

the player to guess who. 

 

 

CHECKPOINT  

If you can tick all of these off you can go to Part 5: 

☐ Ask the user for their eye colour guess 

☐ Print out whether or not their eye guess was right 

☐ Ask the user for their hair colour guess 



 | 9 

☐ Print out whether or not their hair guess was right 

☐ Ask the user for their accessory guess 

☐ Print out whether or not their accessory guess was right 

☐ Run your code! 

 

 

★ BONUS 4.4: BLUE Blue bLuE 

Waiting for the next lecture? Try adding this bonus feature!! 
 
We can use word = word.lower() to change what the player entered to lowercase. 

Update your code so we’re always using the lowercase version of what your player 
entered for their guesses (except the name!) 

 

★ BONUS 4.5: Not so fast! 

Waiting for the next lecture? Try adding this bonus feature!! 
 
This would look cooler if the computer paused before it said each line! 
 

1) At the top of your file write import time 

This will let us use what we need to use to make our program sleep for a few 
seconds. 
 

2) Before we tell the user whether or not they guessed correctly, add a line that says 
time.sleep(1) 
This will make our program 'sleep' for a tenth of a second! You can adjust it to any 
time you want. 

 

  



 | 10 

Rando
m 

Part 5: Choose a random person. 

 

Task 5.1:  One character is not enough 

Comment out the line where you created a character in Task 2.1.  

 

We’re about to get a whole bunch of characters and we’ll choose a character randomly 

from that. You can add your own character to the group later.  

 

Task 5.2:  Copy the list of people 

Go to this link: <bit.ly/gpn-2018-4> and copy the list of the people and all of their 

features. 

 

Paste the list into python so that it looks like this: 

people = [["Aleisha", "brown", "black", "hat"], 

          ["Brittany", "blue", "red", "glasses"], 

          ["Charlie", "green", "brown", "glasses"], 

          ["Dave", "blue", "red", "glasses"], 

          ["Eve", "green", "brown", "glasses"], 

          ["Frankie", "hazel", "black", "hat"], 

          ["George", "brown", "black", "glasses"], 

          ["Hannah", "brown", "black", "glasses"], 

          ["Isla", "brown", "brown", "none"], 

          ["Jackie", "hazel", "blonde", "hat"], 

          ["Kevin", "brown", "black", "hat"], 

          ["Luka", "blue", "brown", "none"]] 

 

 

Task 5.3:  Import Random Library 

To get access to cool random things we need to import random! 

 

At the top of your file add this line: 

import random 

Task 5.4: Choose a random person 

Let’s make the computer pick a random person out of the list that we have to guess! 

 

We’ll use random.choice to choose from the list of people. Store it in a variable called 

http://bit.ly/gpn-2018-4


 | 11 

character. 

Hint 

If I wanted to choose a random food for dinner I could use code like this: 

 

dinner = random.choice(["pizza", "curry", "nutella", "omelette"]) 

 

Task 5.5: Print out the character 

Print out the character that the computer has chosen. 

 

Try running your code a couple of times! You should get a random person each time.  

 

 

 

CHECKPOINT  

If you can tick all of these off you can go to Part 6: 

☐ Comment out the character you made in Task 2.1 

☐ Copied and pasted the list 

☐ Print the list 

☐ Chosen a random person from the list 

☐ Print out the randomly chosen person 

☐ Split up the features of the person 

☐ Print out the features of the person, then comment this code out 

☐ Run your code! 

 

★ BONUS 5.6: Get creative! 

You can add your original character to the list, and more! 
 
We’ve left room for you to draw your own people in the character sheet. Once you’ve 
given them a name, eye colour, hair colour and accessory add them into the list of people 
at the top of your code! 
 
Feel free to add yourself, your friends or one of the wonderful tutors at GPN! 



 | 12 

While 
Loops 

Part 6: Again, Again, Again! 
We want to play 'Guess Who' until we guess the correct person! Let’s add a loop to guess on 

repeat! 

 

Task 6.1: Loop time! 

Create a while loop that runs forever after you’ve selected the character and separated the 

features but before you get them to make the first guess, so we can asks as many 

questions as we want! 

 

Use this line to make the game play on repeat 

while True: 

Hint 

We want to repeat asking lots of questions and checking if the info is correct. So put this 

before your questions and if statements about hair/eyes/accessories/name.  

 

Task 6.2: Indenting your code 

Things we want to do for every question need to be indented inside the loop.  

We want to guess the hair colour, eye colour, accessories and name every time! 

Hint 

Indented lines have a tab (the big empty space) at the start like this, they look this: 
 

while True: 

    # THIS IS INDENTED 

 

Task 6.3: Stopping 

We want our program to stop when we make the right guess! 

After we congratulate the user on making the right guess, add a break to stop the loop. 

 

Task 6.4: Update the wrong answer! 

Update your else statement so that the user is no longer told who the correct person is 

when they get it wrong! 

 

 



 | 13 

CHECKPOINT  

If you can tick all of these off you can go to Part 7: 

☐ Create a while loop that lets your game keep going! 

☐ Your game code is inside the while loop 

☐ The game only ends when you guess the right person! 

  



 | 14 

7. Extension: Which questions? 
So far, we’ve had to ask each question every time we want to guess - even if you only 

needed to find out what their accessory is. Now, we want to let the human player decide 

which question they want to ask.  

 

Task 7.1: Eye colour, hair colour, accessory, or name? 

Once your while loop has started, add a question that asks them what kind of question 

they would like to ask (eye colour, hair colour, accessory, or name?). 

 

Task 7.2: Question time! 

You have 4 kinds of questions and if statement checks. Put each of these 4 chunks inside 

an if statement that means that it will only occur if this was the type of question the user 

wanted to ask.  

Hint 

Remember that input returns a string. Make sure that your type of input (string, int, 

etc.) matches the  if statement!  

  



 | 15 

8. Extension: How many questions? 
Now, let’s track how many (or how few) questions it takes you each game to guess correctly! 

 

Task 8.1: Counter! 

Before your loop create a variable, this will be your guess counter. Start by setting it to 

0. 

 

Task 8.2: Add 1! 

Every time the user makes a guess (a name guess or any other feature guess), add one to 

this counter. 

Hint 

You’ll need to add to the counter inside each of your if or elif statements! 

 

Task 8.3: How many questions? 

At the end of the game, print out how many questions the user has asked. 

 

  



 | 16 

9. Extension: I give up! 

What if you’re sick of guessing, and just want to find out who it is? Let’s now add to our code 

so that we can decide to give up and finish the game. 

 

Task 9.1: I give up! 

When we check if the user has guessed the correct name we see if it is correct, in which 

case they win. Otherwise we tell them to try again.  

 

Let’s let them give up, ending the game and revealing the answer.  

 

Add an elif to your if-else statement(s) so the user can give up and find out who it 

was.  

Hint 

Create an elif statement to check if the user entered “giveup” for their guess when 

trying to guess the name, and in this statement end the game and print out the answer. 

 

★ Challenge 9.2: Cases and “ 

What we’ve written so far will only give the user the answer and quit the game if they input  
“give up” - but what if we want our game to be more robust, and understand that 

someone typing “give up” or “Give Up”  wants the same result? 

 
You might need to modify your elif statement(s), or maybe re-write how you check the 

user input. 

 

★ Challenge 9.3: Even more options! 

What if we want the user to be able to input even more options, like ‘I QUIT’, or ‘WHY 
CANT I GUESS THIS’, and have the computer know that this means the person does not 
want to play any more and to end the game and tell them the answer? 
 

 

  



 | 17 

10. Extension: List the Info 

It’s hard to remember everything you have learned so far about the character. Let’s store it! 

 

Task 10.1 List to store the info 

At the start of the game create an empty list called info to store all of the information we 

have about the mystery person. 
 

It will look something like this, depending on what questions you’ve asked and what the 

answer were: 

[[“eyes”, “blue”, “no”],  

 [“hair”, “brown”, “yes”],   

 [“accessory”, “hat”, “no”],  

 [“name”, “Tim”, “no”],  

 

Task 10.1 List to store the info 

Every time the computer says 'yes' or 'no' to a guess, we want to store that information! 

Create a variable called data and store a list of the information you just learned.  

Hint 

The different kinds of options (eyes, hair, accessory and name) will need different parts to 

be hard coded. Here’s what it would look like for eyes if it wasn’t correct: 

data = ["eyes", eye_guess, "no"] 

 

Task 10.1 List to store the info 

Each time we get a new bit of data append it to the info list.   

Hint 

This is how we add something to a list using append: 

 

pets = [‘dog’, ‘cat’] 

pets.append(‘axolotl’) 

 

Task 10.2 Printing the info 

Print the info at the start of every turn.  

 


