We can print words to the screen as well as displaying images! Let’s print the words Flappy
Bird to the screen so the user can’t forget what game they're playing.

Extension 1.1
1) Store what colour you'd like to use in a variable called colour. You'll need to use

the RGB values.
2) Store what size you’d like to use in a variable called font.
3) Store where you'd like the text to appear in a variable called Location.
4) Blit the text to the screen!

Hint: Your cheat sheet will help you remember the format that these variables require!

Now that we have Flappy Bird up and running, wouldn'’t it be nice to tell the user how many
pipes they managed to get past? Let’s print the final score to the screen!

Extension 2.1
1) Inthe loop where you create the list of pipes, add a new variable called

pipe[1, and store the value of i.
2) When a collision is detected, print the value of pipe[‘number’] of the pipe that
was collided with to the screen.

In the real Flappy Bird game, the Flappy Bird is constantly falling! Update the game so your
Flappy Bird does the same.

Extension 3.1
1) Set the initial value of the variable moving to down.
2) In the code where you check to see what arrow key was pressed, update the code
so if no key is pressed the value of moving is down.

Some of our users are so good, they can get past all the pipes. Let's make the game harder
for them by speeding up the game the longer they play.

Extension 4.1
1) Create a variable called speed and give it a value of 1.

2) Update the code that makes the pipes move across the screen, and subtract
speed from pipe[“x’].
3) Create a new 1f statement where:
a) If the user has passed less than 5 pipes, the value of speed is 1.

b) If the user has passed more than 5 pipes, but less than 10 pipes, the value

of speed is 2.
c) If the user has passed more than 10 pipes, but less than 15 pipes, the

value of speed is 3
d) If the user has passed more than 15 pipes, the value of speed is 4.

Is the game harder now? Play around with value of speed to make the game harder or
easier!

Sometimes the pipes are coming at Flappy Bird at just the wrong speed! Let’'s make the
Flappy be able to move forwards and backwards as well.

Extension 5.1
1) Update the if statement that checks what key has been pressed.

a) If the right arrow has been pressed, set moving to forward.
b) If the left arrow has been pressed, set moving to back.
2) Update the 1 1 statement that checks what the value of moving is.
a) If the value of moving is forward, increase the value of bird_x by 1.
b) If the value of moving is back, decrease the value of bird x by 1.

Have fun sending Flappy Bird all over the screen!

Avoid pipes is easy! Let’s have some obstacles fall across the screen as well!.

1)
2)
3)

Ees)

Extension 6.1

Store the obstacles picture in a variable called obs_image.
Create a new List called obstacles

Create a loop that generates the value of obstacle[7] and
obstacle[7] for each obstacle you want to create.
Inside the game loop, create a loop that blits the obstacles to the screen.

Update the value of obstacle[] and obstacle[‘v’] for each obstacle
so that they fall diagonally across the screen

Detect a collision with the obstacle! If Flappy Bird hits an obstacle, it's game
over!

Hint: If you get stuck, look back at what you did in Part 3 of the first workbook!

Let’s give the user additional ways to collect points! Theres two different ways we can do

this:
1.

When “Press A now” appears on the screen, and the user presses a, we can give
them bonus points; or

When a certain powerup, such as an apple, appears on the screen and the Flappy
Bird collects it.

1)

2)
3)
4)
o)

6)

Extension 7.1

Create a new variable called bonus and set it to

Create a new variable called score and set it to 0.

Create a new variable called counter and set it to -1.

Inside the game loop, create a new statement. If the value of bonus is ,
randomly choose whether the value of bonus is or .

Inside the game loop, create a new ~ © statement. If the value of bonus is true,
set a variable counter to 100.

Inside the game loop, create a new 1 statement. If the value of counter is
greater than @, print the words “press a now for a points bonus to
the screen” and decrease the value of counter by 1. If the value of counter
is less than 0, set bonus to

Inside the i statement you created in step 6, check to see if the ‘a’ key was
pressed. If it was, set the value of counter to 0, increase the score by 5 and set

bonus to

Hint: If you get stuck, take a look at what you did in part 2 of the first workbook!

Extension 7.2

Store the power up picture in a variable called power_image.

Create a new List called powers.

Create a loop that generates the value of power[“x’ 7] and power[‘v’] for
each power up that you want to create.

Inside the game loop, create a loop that blits the power ups to the screen.
Update the value of power[‘x’] for each power up so that they move across the
screen.

Detect a collision with the power up. If Flappy Bird collects the obstacle, add five
points to the score!

Hint: If you get stuck, look at what you did in part 3 of the first workbook!

In the real Flappy Bird game, there’s pipes at the top at the bottom of the screen that you
have to go through. These pipes should have a gap of at least 50 so there’s space for
Flappy Bird to get through!

Extension 8.1

Remove the pipe[‘flipped’] from the for loop where the pipes are created.
Update the for loop in the game loop where the pipes are blitted. Remove the if
statement, and subtract 50 from the -pipe[“v’] for the flipped pipe. Make sure
both the normal pipe and the flipped pipe are blitted to the screen!

Update the loop in the game loop where collision with Flappy Bird are
detected. Store the position of the normal pipe in pipe_rect, and the position of
the flipped pipe in £l ipped_pipe_rect.

Update the statement where collision is detected to check if the bird rect
has collided with pipe_rect or flipped pipe rect.

You should now see pipes on the top and the bottom of the screen! The distance between
the pipes may vary.

Looks like our game is still way too easy! Let’'s make it harder by having the pipes move up
and down.

Extension 9.1

In the loop where the pipes are created, add a variable called pipe[‘move’]
and give it an empty string.
In the loop where the pipes are blitted to the screen, create a new

statement. If pipe[‘move’] is less than 300, set pipe[‘move’] to up. If
pipe[‘move’] is greater than 450, set pipe[‘move’] to down.

In the same for loop, create a new ' © statement. If pipe[‘move’] is set to up,
increase the value of pipe[‘v’] by one. Otherwise, decrease the value of

pipe[‘v’] by one.

Wow! This game just got really hard!

So, our player wants to know if they’ve beaten the high score! Let’s keep track of the 10 top
high scores, and let the player know if they made the leaderboard!

Extension 10.1

Create afile called highscores. txt. Store this file in the same folder that your
program is saved in.

In the file highscores.txt, on each line add a number, a comma, then a name.
Save the file.

When the game is over, open the highscores. txt file for reading

Read the high scoresinas a List called high_scores.

Sort the high_scores to be in order.

Print the high scores to the screen.

Ask the user for their name in the shell. Make sure you tell them on the screen that
you’re waiting for their name! Store the user’s input in a variable called name.
Add the user’s name and the current score to the list of high_scores.
Overwrite highscores. txt to store the current list of high scores.

For every 5 pipes that our Flappy Bird gets through, let’s allow them to just shoot through the
next one! Make sure the player knows they have this ability!

Extension 11.1

Hint: Extension 1 shows you how to print to the screen.

At the top of the screen, print a message telling the user that every sixth pipe
won'’t hurt Flappy Bird!

At the bottom of the screen, over each pipe, print what number pipe it is. Make
each sixth pipe number a different colour.

For each pipe, check to see if pipe[‘number’] is a multiple of six. If it isn’t,
check for a collision.

So, our players can constantly make it to the end of the Flappy Bird game! Let's make the
game harder by always generating another 20 pipes if they make it past them all!

Extension 12.1

Create a function called generate pipes

Move your code that creates the List of pipes to your new function
generate_pipes.

Update your game loop so that every time a user passes 15 pipes, the
generate_pipes function is called.

Our players love the game so much, they just want to keep playing! Let's make it easier for
them to reset the game when they lose.

Extension 13.1

Create a new function called reset_game.

Move all your code for setting up the game into this function

Set all the variables used in the reset _game function to be global.

Before the game loop, call the reset _game function.

Where you check to see if the player pressed the ‘q’ key, check to see if the user
pressed the ‘v’ key. If so, call the function reset_game.

