

Flappy Bird Extensions!
Extension 1: Printing Flappy Bird!
We can print words to the screen as well as displaying images! Let’s print the words Flappy
Bird to the screen so the user can’t forget what game they're playing.

Extension 1.1
1) Store what colour you’d like to use in a variable called colour. You’ll need to use

the RGB values.
2) Store what size you’d like to use in a variable called font.
3) Store where you’d like the text to appear in a variable called location.
4) Blit the text to the screen!

Hint: Your cheat sheet will help you remember the format that these variables require!

Extension 2: Print the user’s score!
Now that we have Flappy Bird up and running, wouldn’t it be nice to tell the user how many
pipes they managed to get past? Let’s print the final score to the screen!

Extension 2.1
1) In the for loop where you create the list of pipes, add a new variable called

pipe[‘number’], and store the value of i.
2) When a collision is detected, print the value of pipe[‘number’] of the pipe that

was collided with to the screen.

Extension 3: Make Flappy Bird Fall!
In the real Flappy Bird game, the Flappy Bird is constantly falling! Update the game so your
Flappy Bird does the same.

Extension 3.1
1) Set the initial value of the variable moving to down.
2) In the code where you check to see what arrow key was pressed, update the code

so if no key is pressed the value of moving is down.

Extension 4: Faster Flappy Bird
Some of our users are so good, they can get past all the pipes. Let’s make the game harder
for them by speeding up the game the longer they play.

Extension 4.1
1) Create a variable called speed and give it a value of 1.
2) Update the code that makes the pipes move across the screen, and subtract

speed from pipe[‘x’].
3) Create a new if statement where:

a) If the user has passed less than 5 pipes, the value of speed is 1.
b) If the user has passed more than 5 pipes, but less than 10 pipes, the value

of speed is 2.
c) If the user has passed more than 10 pipes, but less than 15 pipes, the

value of speed is 3
d) If the user has passed more than 15 pipes, the value of speed is 4.

Is the game harder now? Play around with value of speed to make the game harder or
easier!

Extension 5: Forwards and Backwards
Sometimes the pipes are coming at Flappy Bird at just the wrong speed! Let’s make the
Flappy be able to move forwards and backwards as well.

Extension 5.1
1) Update the if statement that checks what key has been pressed.

a) If the right arrow has been pressed, set moving to forward.
b) If the left arrow has been pressed, set moving to back.

2) Update the if statement that checks what the value of moving is.
a) If the value of moving is forward, increase the value of bird_x by 1.
b) If the value of moving is back, decrease the value of bird_x by 1.

Have fun sending Flappy Bird all over the screen!

Extension 6: Falling Obstacles
Avoid pipes is easy! Let’s have some obstacles fall across the screen as well!.

Extension 6.1
1) Store the obstacles picture in a variable called obs_image.
2) Create a new list called obstacles
3) Create a for loop that generates the value of obstacle[‘x’] and

obstacle[‘y’] for each obstacle you want to create.
4) Inside the game loop, create a for loop that blits the obstacles to the screen.
5) Update the value of obstacle[‘x’] and obstacle[‘y’] for each obstacle

so that they fall diagonally across the screen
6) Detect a collision with the obstacle! If Flappy Bird hits an obstacle, it’s game

over!

Hint: If you get stuck, look back at what you did in Part 3 of the first workbook!

Extension 7: Collect point bonuses!
Let’s give the user additional ways to collect points! Theres two different ways we can do
this:

1. When “Press A now” appears on the screen, and the user presses a, we can give
them bonus points; or

2. When a certain powerup, such as an apple, appears on the screen and the Flappy
Bird collects it.

Extension 7.1
1) Create a new variable called bonus and set it to False.
2) Create a new variable called score and set it to 0.
3) Create a new variable called counter and set it to -1.
4) Inside the game loop, create a new if statement. If the value of bonus is False,

randomly choose whether the value of bonus is True or False.
5) Inside the game loop, create a new if statement. If the value of bonus is true,

set a variable counter to 100.
6) Inside the game loop, create a new if statement. If the value of counter is

greater than 0, print the words “press a now for a points bonus to
the screen” and decrease the value of counter by 1. If the value of counter
is less than 0, set bonus to False.

7) Inside the if statement you created in step 6, check to see if the ‘a’ key was
pressed. If it was, set the value of counter to 0, increase the score by 5 and set
bonus to False.

Hint: If you get stuck, take a look at what you did in part 2 of the first workbook!

Extension 7.2
● Store the power up picture in a variable called power_image.
● Create a new list called powers.
● Create a for loop that generates the value of power[‘x’] and power[‘y’] for

each power up that you want to create.
● Inside the game loop, create a for loop that blits the power ups to the screen.
● Update the value of power[‘x’] for each power up so that they move across the

screen.
● Detect a collision with the power up. If Flappy Bird collects the obstacle, add five

points to the score!

Hint: If you get stuck, look at what you did in part 3 of the first workbook!

Extension 8: Add pipes to the top and the bottom!
In the real Flappy Bird game, there’s pipes at the top at the bottom of the screen that you
have to go through. These pipes should have a gap of at least 50 so there’s space for
Flappy Bird to get through!

Extension 8.1
● Remove the pipe[‘flipped’] from the for loop where the pipes are created.
● Update the for loop in the game loop where the pipes are blitted. Remove the if

statement, and subtract 50 from the -pipe[‘y’] for the flipped pipe. Make sure
both the normal pipe and the flipped pipe are blitted to the screen!

● Update the for loop in the game loop where collision with Flappy Bird are
detected. Store the position of the normal pipe in pipe_rect, and the position of
the flipped pipe in flipped_pipe_rect.

● Update the if statement where collision is detected to check if the bird_rect
has collided with pipe_rect or flipped_pipe_rect.

You should now see pipes on the top and the bottom of the screen! The distance between
the pipes may vary.

Extension 9: Make the pipes move!
Looks like our game is still way too easy! Let’s make it harder by having the pipes move up
and down.

Extension 9.1
● In the for loop where the pipes are created, add a variable called pipe[‘move’]

and give it an empty string.
● In the for loop where the pipes are blitted to the screen, create a new if

statement. If pipe[‘move’] is less than 300, set pipe[‘move’] to up. If
pipe[‘move’] is greater than 450, set pipe[‘move’] to down.

● In the same for loop, create a new if statement. If pipe[‘move’] is set to up,
increase the value of pipe[‘y’] by one. Otherwise, decrease the value of
pipe[‘y’] by one.

Wow! This game just got really hard!

Extension 10: Display the High Scores!
So, our player wants to know if they’ve beaten the high score! Let’s keep track of the 10 top
high scores, and let the player know if they made the leaderboard!

Extension 10.1
● Create a file called highscores.txt. Store this file in the same folder that your

program is saved in.
● In the file highscores.txt, on each line add a number, a comma, then a name.

Save the file.
● When the game is over, open the highscores.txt file for reading
● Read the high scores in as a list called high_scores.
● Sort the high_scores to be in order.
● Print the high scores to the screen.
● Ask the user for their name in the shell. Make sure you tell them on the screen that

you’re waiting for their name! Store the user’s input in a variable called name.
● Add the user’s name and the current score to the list of high_scores.
● Overwrite highscores.txt to store the current list of high_scores.

Extension 11: Free pass!
For every 5 pipes that our Flappy Bird gets through, let’s allow them to just shoot through the
next one! Make sure the player knows they have this ability!

Extension 11.1
● At the top of the screen, print a message telling the user that every sixth pipe

won’t hurt Flappy Bird!
● At the bottom of the screen, over each pipe, print what number pipe it is. Make

each sixth pipe number a different colour.
● For each pipe, check to see if pipe[‘number’] is a multiple of six. If it isn’t,

check for a collision.

Hint: Extension 1 shows you how to print to the screen.

Extension 12: Infinite pipes!
So, our players can constantly make it to the end of the Flappy Bird game! Let’s make the
game harder by always generating another 20 pipes if they make it past them all!

Extension 12.1
● Create a function called generate_pipes
● Move your code that creates the list of pipes to your new function

generate_pipes.
● Update your game loop so that every time a user passes 15 pipes, the

generate_pipes function is called.

Extension 13: Game Reset!
Our players love the game so much, they just want to keep playing! Let’s make it easier for
them to reset the game when they lose.

Extension 13.1
● Create a new function called reset_game.
● Move all your code for setting up the game into this function
● Set all the variables used in the reset_game function to be global.
● Before the game loop, call the reset_game function.
● Where you check to see if the player pressed the ‘q’ key, check to see if the user

pressed the ‘r’ key. If so, call the function reset_game.

