We can print words to the screen as well as displaying images! Let’s print the words Flappy Bird to the screen
so the user can’t forget what game they're playing.

Extension 1.1
1) Store what colour you’'d like to use in a variable called colour. You'll need to use the RGB values.
2) Store what size you’d like to use in a variable called font.
3) Store where you'd like the text to appear in a variable called Location.
4) Blit the text to the screen!

Hint: Your cheat sheet will help you remember the format that these variables require!

Now that we have Flappy Bird up and running, wouldn’t it be nice to tell the user how many pipes they
managed to get past? Let’s print the final score to the screen!

Extension 2.1
1) Inthe loop where you create the list of pipes, add a new variable called pipe[ 1, and
store the value of i.
2) When a collision is detected, print the value of pipe[ ‘number’ ] of the pipe that was collided with
to the screen.

In the real Flappy Bird game, the Flappy Bird is constantly falling! Update the game so your Flappy Bird does
the same.

Extension 3.1
1) Set the initial value of the variable moving to down.
2) In the code where you check to see what arrow key was pressed, update the code so if no key is
pressed the value of moving is down.




Some of our users are so good, they can get past all the pipes. Let’'s make the game harder for them by
speeding up the game the longer they play.

Extension 4.1
1) Create a variable called speed and give it a value of 1.
2) Update the code that makes the pipes move across the screen, and subtract speed from
pipe[ “x’].

3) Create a new 1f statement where:
a) If the user has passed less than 5 pipes, the value of speed is 1.
b) If the user has passed more than 5 pipes, but less than 10 pipes, the value of speed is 2.
c) If the user has passed more than 10 pipes, but less than 15 pipes, the value of speed is 3
d) If the user has passed more than 15 pipes, the value of speed is 4.

Is the game harder now? Play around with value of speed to make the game harder or easier!

Sometimes the pipes are coming at Flappy Bird at just the wrong speed! Let's make the Flappy be able to
move forwards and backwards as well.

Extension 5.1
1) Update the 1 ¢ statement that checks what key has been pressed.
a) If the right arrow has been pressed, set moving to forward.
b) If the left arrow has been pressed, set moving to back.
2) Update the 1 f statement that checks what the value of moving is.
a) If the value of moving is forward, increase the value of bird_x by 1.
b) If the value of moving is back, decrease the value of bird_x by 1.

Have fun sending Flappy Bird all over the screen!

Avoid pipes is easy! Let’s have some obstacles fall across the screen as well!.

Extension 6.1
1) Store the obstacles picture in a variable called obs_image.
2) Create anew List called obstacles

3) Create a loop that generates the value of obstacle[ ] and obstacle[ 7] for each
obstacle you want to create.
4) Inside the game loop, create a loop that blits the obstacles to the screen.

5) Update the value of obstacle[ ] and obstacle[ ‘v’ ] for each obstacle so that they fall
diagonally across the screen
6) Detect a collision with the obstacle! If Flappy Bird hits an obstacle, it's game over!

Hint: If you get stuck, look back at what you did in Part 3 of the first workbook!




