

Girls’ Programming Network

Bop It with Micro:Bits!

 | 1

This project was created by GPN Australia for GPN

sites all around Australia!

This workbook and related materials were created by tutors at:

Sydney and Canberra

Girls’ Programming Network

If you see any of the following tutors don’t forget to thank them!!

Writers Testers

Renee Noble

Courtney Ross

Alex McCulloch

Belinda Wong

Rowena Stewart

Kim Apted

Kassandra di Bona

Jennifer Henoch

Mikaela Goldstein

Michelle McPartland

 | 2

Part 0: Setting up

Task 0.1: Logging into Grok

Let’s get started with Grok!

1. Go to https://groklearning.com/

2. Log into an account you already have, or create one.

Ask a tutor if you need help!

3. Watch the tutors demonstrate how to access the course for today!

Task 0.1: Grok On

First we’re going to do a few fun problems in Grok to teach us about programming

micro:bits.

1. Go through the GPN Bop It Intro Module and answer all the questions!

Hint

Don’t forget to use your cheat sheets!

CHECKPOINT

If you can tick all of these off you can go to Part 1:

☐ You are logged into your Grok account

☐ Your workspace has a program.py file in the Code tab

☐ You have completed all the problems in the Grok intro module

Intro
to

Micro:
Bit

https://groklearning.com/

 | 3

Today’s Project Plan - Bop It
We’re going to make a Bop It game!

It will prompt the user to press Button A or B to get points! Get as

many points as you can in the time limit.

Start off the game by showing a starting image!

List your actions, and choose a random action to
be the first move!

Display different images on the screen
depending on what action you chose!

Add a loop to make it choose and display actions
over and over again!

Make the game wait for you to complete the action.
Get a smiley and new move when you’re correct!

Add scores to the game and show the final score
at the end of the game!

Once your base game works
add cool extensions!

There’s extensions sounds, making your own buttons out of foil, using
radio communication to make multiplayer games and many more!!

 | 4

Part 1: Ready! Set! Go!

Task 1.1: A new file!

Now you’ve finished the problems in Grok, we can go to the first Micro:Bit playground!

1. Go to the first Micro:Bit playground in the Grok course.

2. At the top of the file add a new line (above the import line) use a comment to write

your name.

Hint

Remember comments start with a #

This is a comment

Task 1.2: Starting your game

To show that the game is starting let’s show a target image for 1 second!

1. After your comment use display.show() to show a target.

(called Image.TARGET)

2. Make the program sleep for 1000 milliseconds.

3. Then clear the display.

 CHECKPOINT

If you can tick all of these off you can go to Part 2:

☐ Your program shows a target at the start of the game for one

second and then clears the display.

☐ You tried it on your real life Micro:Bit

 | 5

Part 2: Choosing a move

Task 2.1: Making a list of actions

We need to make a list of actions to refer to later.

1. At the end of your code, create a list called actions.

2. Inside the list store the two actions "button a" and "button b".

Hint

Remember a list looks like this:

good_foods = ["pizza", "curry", "nutella", "omelette"]

Task 2.2: Get random

To randomly select actions in our game we’ll need to import a special library.

1. Add a new line after from microbit import * line

2. On this line write import random

Task 2.3: Selecting the next action

Now we’ll use the library to choose a move from our list of actions.

1. Make a new line after our list of actions.

2. Choose a random action from the list of actions. Assign it to a variable called

action.

3. Then print the action so we can see what it is.

Rando
m

 | 6

Hint

Remember we can choose something randomly from a list like this:

food_list = ["pizza", "curry", "nutella", "omelette"]

dinner = random.choice(food_list)

Task 2.4: Check that it works!

Now you need to run your program a few times to check that it is working!

1. Run your code multiple times. See what action it prints out.

Do you get different actions?

You might get the same one a few times in a row.

CHECKPOINT

If you can tick all of these off you can go to Part 3:

☐ You have a list of actions

☐ You choose an action using random

☐ You have the next action stored in a variable

☐ You have a print statement that prints out the action

 | 7

If
statements

Part 3: Light it up!

Task 3.1: What’s your action?

In part 2, you made two actions your game can choose from.

Do you remember what they were called?

Write their names down below:

 1) …………………………………………….

 2) …………………………………………….

Task 3.2: What’s your image?

We want to point to the button the player should press.

Which action will we show these images for?

Image.ARROW_W

Image.ARROW_E

Action: ……………………….

Action: ……………………….

 | 8

Task 3.3: Giving the first action a picture

Let’s check what action was selected and display a picture!

1. At the bottom of your code create an if statement

2. The if statement should check if the action the computer chose is "button a".

3. Inside the if statement, use display.show() to show the arrow that points to

Button A. Make sure it’s indented.

Hint

Remember if statements have indentation. Here’s an example about the weather:

if raining == True:

 print ('oh no!')

Task 3.4: Giving the second action a picture

Now we’ll do the same for the other action

1. After that if statement, create another if statement.

2. This time check if "button b" is the action.

3. Inside this if statement, display the arrow that points to Button B.

Task 3.5: Testing time!

Run your code!

1. Check in the Grok console to see which action was selected.

2. Does it print out the correct picture for the action?

3. Run your program multiple times to check both actions!

 | 9

CHECKPOINT

If you can tick all of these off you can go to Part 4:

☐ When you run the program, it shows one of the pictures below

Picture 1:

Picture 2:

☐ If you run the program multiple times, it shows the other picture

sometimes. (This might take a few goes)

★ BONUS 3.6: Choose your own pictures! ★

Waiting for the next lecture? Try adding this bonus feature!!

Instead of showing left and right arrows, let’s choose our own pictures!

● Replace the code that shows the left arrow with Image.SQUARE

● Replace the code that shows the right arrow with Image.HEART

What do you see when you run the program? What if you restart the program a few times?

Find more images on the Micro:Bit Image Cheat Sheet: http://bit.ly/images-microbit

http://bit.ly/images-microbit

 | 10

While
Loops

Part 4: The more actions the merrier!

Task 4.1: Looping for 10 seconds

So we know when to stop the game, we need to know when it started!

1. Make a new line after you randomly choose an action.

2. Ask the Micro:Bit how long the game has been running by using

running_time().

3. Store the running_time() in a variable called start_time.

4. On the next line, create a variable called end_time, set it to start_time plus

1000 milliseconds.

Task 4.2: Here we go again!

Now let’s add the loop that goes until the end_time!

1. Go to the next line after you set the end_time.

2. Add a while loop with a condition that checks that the current running_time()

is less than the end_time.

3. Indent all the code that is below this line (your if statements), so it is inside the

while loop.

 | 11

Hint - While Loops

Your while loop should have a structure similar to this example:

while raining == True:

 print ('Raindrops keep falling on my head')

Task 4.3: Wait a second and then change the action

We already show the image for the first action we choose! Let’s wait 500 milliseconds,

then choose a new action.

1. Go to the end of your code, and make a new line. It should be indented inside the

while loop, but not inside the last if statement.

2. Sleep for 500 milliseconds.

3. After the sleep, update the value of action by choosing a new one from the list

of actions again.

Hint

To overwrite a variable just assign something new to it!

You can use the same code you used in Task 2.3 to pick the first random move.

CHECKPOINT

If you can tick all of these off you can go to Part 5:

☐ Your game runs for 10 seconds

☐ Your game keeps choosing new random actions

☐ Your game updates to the correct picture for the new action

 | 12

Micro:Bit

Buttons

Part 5: Button Presses

Task 5.1: If Button A is pressed

If the action is button_a, then we want to check whether button_a has been pressed.

1. Go to where you show the image for when the action is "button a" and create a

new line.

2. Create another if statement on the new line.

Make this line is indented inside your existing if statement.

3. Make this new if statement check whether button_a.is_pressed().

4. Indented inside the new if statement, display a smiley face to celebrate!

Hint - Showing a Happy Face

The image for a smiley face is: Image.HAPPY

Task 5.2: Else, when Button A is not pressed

When button_a has not been pressed, we should continue the game.

1. Add an else statement for if the button is not being pressed.

2. Inside that else statement, add continue.

 | 13

Hint - Else

Your if-else statement should have a structure similar to this example:

if raining == True:

 print ('oh no!')

else:

 print ('Yay!')

Don’t forget that indentation is important!

Task 5.3: Button B Pressed?

Now it’s button_b’s turn!

1. Inside the if statement that checks to see if the action is button_b, add an if

statement that checks to see if button_b.is_pressed().

2. Add an else to the if statement, that has a continue.

CHECKPOINT

If you can tick all of these off you can go to Part 6:

☐ When the action is “button a” and you press button_a, a

 smiley face is displayed.

☐ When the action is “button b” and you press button_b, a

 smiley face is displayed.

☐ Your game waits on the same move until you press a button.

 | 14

Part 6: Scoring

Task 6.1: Let’s get this scoring party started!

Create a variable to keep track of the score.

1. Create a new line in your code before the while loop starts.

2. Here, create a variable called score and set it to 0.

Task 6.2: Get those points!

Every time the correct move is made, add 1 to the score.

1. Go to your if statement where you check if button A was pressed.

2. Create a new line after you show the smiley face.

3. On the new line, add 1 to the score variable.

4. Repeat for the other action.

 | 15

Task 6.3: How did you do?

Now we need to tell the player how well they did!

1. Go to the end of the program, after the while loop finishes.

2. scroll the final score across the display.

CHECKPOINT

If you can tick all of these off you can go to the Extensions:

☐ You have a score variable that is set to 0 at the start of the program

☐ At the end of the game, the score scrolls across the display

☐ You have made sure that the score counts to the right number

